Article ID Journal Published Year Pages File Type
10751536 Biochemical and Biophysical Research Communications 2015 8 Pages PDF
Abstract
The early stages of the atherosclerotic process are initiated by accumulation of oxidized low-density lipoprotein (oxLDL) and damage to the structure or function of the endothelium. Antioxidant supplementation may be a plausible strategy to prevent atherosclerotic disease by quenching excessive reactive oxidative species. In the present study, we demonstrated that idebenone at suitable concentrations significantly prevented oxLDL-induced endothelial dysfunction. The underlying mechanisms of idebenone included inhibition of oxidative damage, suppression of the down-regulation of Bcl-2 and up-regulation of Bax and cleaved caspase-3 in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL. Moreover, idebenone pretreatment inhibited oxLDL-mediated HUVECs damage by attenuating lipid peroxidation and promoting SOD activity. Finally, pro-incubation with idebenone inhibited mitochondrial dysfunction induced by oxLDL through the mitochondrial-dependent apoptotic pathway and GSK3β/β-catenin signalling pathways. In summary, idebenone is a promising agent in the treatment or prevention of atherosclerosis via inhibiting oxidative stress and improving mitochondrial function.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,