Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10753081 | Biochemical and Biophysical Research Communications | 2015 | 5 Pages |
Abstract
Myocardial β-adrenergic receptor (β-AR) β1- and β2-subtypes are highly homologous, but play opposite roles in cardiac apoptosis and heart failure, as do cardiac adenylyl cyclase (AC) subtypes 5 (AC5) and 6 (AC6): β1-AR and AC5 promote cardiac remodeling, while β2-AR and AC6 activate cell survival pathways. However, the mechanisms involved remain poorly understood. We hypothesized that AC5 is coupled preferentially to β1-AR rather than β2-AR, and we examined this idea by means of pharmacological and genetic approaches. We found that selective inhibition of AC5 with 2â²5â²-dideoxyadenosine significantly suppressed cAMP accumulation and cardiac apoptosis induced by selective β1-AR stimulation, but had no effect on cAMP accumulation and cardiac apoptosis in response to selective β2-AR stimulation. The results of selective stimulation of β1-AR and β2-AR in neonatal cardiac myocytes prepared from wild-type and AC5-knockout mice were also consistent with the idea that β1-AR selectively couples with AC5. We believe these results are helpful for understanding the mechanisms underlying the different roles of AR subtypes in healthy and diseased hearts.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Takashi Tsunematsu, Satoshi Okumura, Yasumasa Mototani, Yoshiki Ohnuki, Huiling Jin, Wenqian Cai, Kenji Suita, Itaru Sato, Masanari Umemura, Utako Yokoyama, Motohiko Sato, Takayuki Fujita, Yoshihiro Ishikawa,