| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10753870 | Biochemical and Biophysical Research Communications | 2014 | 6 Pages | 
Abstract
												Ubiquitin C-terminal hydrolase-L3 (UCH-L3) is among the deubiquitinating enzymes (DUBs) that cleave ubiquitin (Ub) from Ub precursors or protein substrates. Many DUBs have been shown to participate in cancer progression in various tissues. However, the mechanism and role of UCH-L3 in carcinogenesis has largely been unknown until recently. Here we investigated the implication of UCH-L3 in prostate cancer progression. Interestingly, UCH-L3 is upregulated in normal or non-metastatic prostate cancer cells and is downregulated in metastatic prostate cancer cell lines. Notably, knockdown of UCH-L3 in normal prostate cell line RWPE1 promotes epithelial-to-mesenchymal transition (EMT), an important process for cancer cell invasion and metastasis. The induction of EMT by UCH-L3 knockdown results in an increase of cell migration and invasion. Yet, to the contrary, overexpression of UCH-L3 in highly metastatic prostate cancer cell line PC3 reverses EMT but the active site mutant UCH-L3 did not. Collectively, our findings identify UCH-L3 as a novel EMT regulator in prostate cells and highlight UCH-L3 as a potential therapeutic target for preventing metastatic prostate cancer.
											Keywords
												
											Related Topics
												
													Life Sciences
													Biochemistry, Genetics and Molecular Biology
													Biochemistry
												
											Authors
												Hyun Min Song, Jae Eun Lee, Jung Hwa Kim, 
											