Article ID Journal Published Year Pages File Type
10754241 Biochemical and Biophysical Research Communications 2014 7 Pages PDF
Abstract
Two pore domain potassium (K2P) channels are mostly present in the central nervous system (CNS) where they play important roles in modulating neuronal excitability. K2P channels give rise to background K+ currents (IKSO) a key component in setting and maintaining the resting membrane potential in excitable cells. Here, we studied the expression and relative abundances of K2P channels in cerebellar granule neurons (CGNs), combining molecular biology, electrophysiology and immunologic techniques. The CGN IKSO was very sensitive to external pH, as previously reported. Quantitative determination of mRNA expression level demonstrated the existence of an accumulation pattern of transcripts in CGN that encode K2P9 > K2P1 > K2P3 > K2P18 > K2P2 = K2P10 > K2P4 > K2P5 subunits. The presence of the major K2P subunits expressed was then confirmed by Western blot and immunofluorescence analysis, demonstrating robust expression of K2P1 (TWIK-1), K2P3 (TASK-1), K2P9 (TASK-3) and K2P18 (TRESK) channel protein. Based, on these results, it is concluded that K2P1, -3, -9 and -18 subunits represent the majority component of IKSO current in CGN.
Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,