Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10754500 | Biochemical and Biophysical Research Communications | 2014 | 6 Pages |
Abstract
The stromal cell-derived factor-1α/C-X-C chemokine receptor 4 (SDF-1/CXCR4) axis is involved in various aspects of tissue repair, regeneration and development. However, the role of SDF-1/CXCR4 in acute lung injury (ALI) remains largely unknown. The aim of the present investigation is to examine pathological changes in a rabbit model with ALI induced by oleic acid (OA) and to explore the protective effect of SDF-1α on ALI. Intravenous application (i.v.) of oleic acid (0.1 ml/kg/h for 2 h) provoked pulmonary hemorrhage, edema, and protein leakage, resulting in severe ALI. When the rabbit received an infusion of SDF-1α (20 μg/kg/24 h) for 30 min before OA treatment, SDF-1α seemed to significantly improve the pathologies associated with OA-induced ALI. While dissecting the molecular mechanisms underlying the beneficial effects of SDF-1α, we found that SDF-1/CXCR4 is expressed in uninjured lung tissues but is greatly reduced after OA treatment. Interestingly, intravenous delivery of SDF-1α could target an injured lung and rescue expression of CXCR4, which in turn activates anti-apoptotic proteins, Bcl-1 and Bcl-xl, but does not affect pro-apoptotic proteins, such as Bad and Bax. These data suggested that SDF-1α could protect rabbit lungs from AIL. The molecular mechanism might be associated with upregulating anti-apoptosis family expression through CXCR4. Thus, SDF-1/CXCR4 signaling pathway may be a promising target for treatment of patients with ALI.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Weixin Guo, Zhihong Li, Xiaoyun Xie, Tao Tan, Shouhong Wang, Nanzi Xie, Minghuan Fu, Hua Zhu, Tiehe Qin,