Article ID Journal Published Year Pages File Type
10757822 Biochemical and Biophysical Research Communications 2013 7 Pages PDF
Abstract
Adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) can be equally proper in the treatment of neurodegenerative diseases. However, ADSCs have practical benefits. In this study, we attempted to induce the secretion of neurotrophic factors (NTF) in human ADSCs. We then evaluated the effects of co-culture with NTF secreting cells in neural differentiation of human ADSCs. Isolated human ADSCs were induced to neurotrophic factors secreting cells. To evaluate the in vitro effects of NTF-secreting ADSCs on neurogenic differentiation of ADSCs, we used neurogenic induction medium (control group), the combination of neurogenic medium and conditioned medium, or co-cultured NTF-secreting ADSCs which were encapsulated in alginate beads (co-culture) for 7 days. ELISA showed increased (by about 5 times) release of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in NTF-secreting ADSCs compared to human ADSCs. Real time RT-PCR analysis revealed that NTF-secreting ADSCs highly expressed NGF and BDNF. In addition, co-culture with NTF-secreting ADSCs could also promote neuronal differentiation relative to gliogenesis. Overall, NTF-secreting ADSCs secrete a range of growth factors whose levels in culture could promote neuronal differentiation and could support the survival and regeneration in a variety of neurodegenerative diseases.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,