Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10757836 | Biochemical and Biophysical Research Communications | 2013 | 5 Pages |
Abstract
In our previous study, coprisin, a 43-mer defensin-like peptide, was derived from the dung beetle, Copris tripartitus, and a 9-mer CopA3 (monomer), truncated coprisin analog peptide, was designed. However, the antifungal effects of CopA3 are not known yet. In this study, the antifungal activity and mechanism of CopA3 were investigated and to develop a more effective antimicrobial peptide under physiological conditions, the enantiomeric d-CopA3 was designed. l- and d-CopA3 had a similar antifungal activity without chiral selectivity, and their activity was more potent than that of melittin used as a positive control. Furthermore, l- and d-CopA3 did not even show any hemolysis against human erythrocytes. Membrane studies using propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], suggested that the antifungal effect of l- and d-CopA3 was due to the membrane-active mechanism, by contrast with coprisin possessing apoptotic mechanism without membrane permeabilization. Finally, the proteolytic resistance and antifungal activity of l- and d-CopA3 against trypsin was analyzed by HPLC and colony count assay. The results showed that only d-CopA3 maintained a potent antifungal activity despite the proteolytic condition. Therefore, this study suggests that d-CopA3 has potential as a novel antimicrobial agent.
Keywords
PBSbis-(1,3-dibutylbarbituric acid) trimethine oxonolCFUsATCCKCTCCLSICH3CN3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromideDiBAC4(3)MTTAcetonitrilestandard deviationPhosphate buffered salineAmerican Type Culture CollectionKorean Collection for Type CulturesClinical and Laboratory Standards Institutecolony-forming unitsAntimicrobial peptide
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Hyemin Choi, Jae-Sam Hwang, Ho Kim, Dong Gun Lee,