Article ID Journal Published Year Pages File Type
10765072 Biochemical and Biophysical Research Communications 2010 6 Pages PDF
Abstract
Evidence exists that the adenosine receptor A2AR and the dopamine receptor D2R form constitutive heteromers in living cells. Mass spectrometry and pull-down data showed that an arginine-rich domain of the D2R third intracellular loop binds via electrostatic interactions to a specific motif of the A2AR C-terminal tail. It has been indicated that the phosphorylated serine 374 might represent an important residue in this motif. In the present study, it was found that a point mutation of serine 374 to alanine reduced the A2AR ability to interact with D2R. Also, this point mutation abolished the A2AR-mediated inhibition of both the D2R high affinity agonist binding and signaling. These results point to a key role of serine 374 in the A2AR-D2R interface. All together these results indicate that by targeting A2AR serine 374 it will be possible to allosterically modulate A2AR-D2R function, thus representing a new approach for therapeutically modulate D2R function.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,