Article ID Journal Published Year Pages File Type
10765898 Biochemical and Biophysical Research Communications 2009 5 Pages PDF
Abstract
Oscillations of intracellular Ca2+ provide a novel mechanism for sustained activation of cellular processes. Receptor-activated oscillations are mainly thought to occur through rhythmic IP3-dependent store discharge. However, as shown here in HEK293 cells 1 nM orexin-A (Ox-A) acting at OX1 receptors (OX1R) triggered oscillatory Ca2+ responses, requiring external Ca2+. These responses were attenuated by interference with TRPC3 channel (but not TRPC1/4) function using dominant negative constructs, elevated Mg2+ (a blocker of many TRP channels) or inhibition of phospholipase A2. These treatments did not affect Ca2+ oscillations elicited by high concentrations of Ox-A (100 nM) in the absence of external Ca2+. OX1R are thus able to activate TRPC(3)-channel-dependent oscillatory responses independently of store discharge.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,