Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10766363 | Biochemical and Biophysical Research Communications | 2009 | 5 Pages |
Abstract
Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPARα) signaling. Furthermore, using PPARα agonists and antagonists, we also analyzed the effect of PPARα signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Hussein Hassan Aly, Kunitada Shimotohno, Makoto Hijikata,