| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10766716 | Biochemical and Biophysical Research Communications | 2008 | 6 Pages | 
Abstract
												Histone lysine methylation is an evolutionally conserved modification involved in determining chromatin states associated with gene activation or repression. Here we report that the Arabidopsis SET domain group 8 (SDG8) protein is a histone H3 methyltransferase involved in regulating shoot branching. Knockout mutations of the SDG8 gene markedly reduce the global levels of histone H3 trimethylation at lysines 9 and 36 as well as dimethylation at lysine 36. The sdg8 mutants produce more shoot branches than wild-type plants. The expression of SPS/BUS (supershoot/bushy), a repressor of shoot branching, is decreased in sdg8 mutants, while UGT74E2 (UDP-glycosyltransferase 74E2), a gene associated with increased shoot branching, is up-regulated in sdg8 mutants. The altered expression of SPS/BUS and UGT74E2 correlates with changed histone H3 methylation at these loci. These results suggest that SDG8 regulates shoot branching via controlling the methylation states of its target genes.
											Related Topics
												
													Life Sciences
													Biochemistry, Genetics and Molecular Biology
													Biochemistry
												
											Authors
												Gaofeng Dong, Din-Pow Ma, Jiaxu Li, 
											