Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10766968 | Biochemical and Biophysical Research Communications | 2007 | 6 Pages |
Abstract
Curcumin, the major constituent of turmeric is a known antioxidant. We have examined the oxidative folding of the model four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in its presence; results indicate that RNase A regeneration rate increases in a curcumin-dependent manner. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by this non-redox-active natural product. Our results provide a template for the design of curcuminoid-based synthetic small-molecule fold catalysts that accelerate the folding of ER-processed proteins; this assumes significance given that nitrosative stress and dysfunction of the ER-resident oxidoreductase protein disulfide isomerise due to S-nitrosylation are factors associated with the pathogenesis of Alzheimer's and Parkinson's diseases.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Gabriel Gomez, Gabriel Mansouraty, Jessica Gardea, Mahesh Narayan,