Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10767393 | Biochemical and Biophysical Research Communications | 2007 | 6 Pages |
Abstract
The trans-translation system in bacteria promotes recycling of stalled ribosomes and targets incomplete peptides for proteolysis. In Escherichia coli, loss of trans-translation function has little effect on growth under normal laboratory conditions. Among the subtle phenotypes of tmRNA-deficient mutants is the inability to plate certain λimmP22 phages. This phenotype is dependent on the ribosome recycling functions of the trans-translation system but is independent of its proteolysis-targeting activity. The experiments described here show that translation of the first (resume) codon of the tmRNA open reading frame by a tRNA is both necessary and sufficient for ribosome recycling. While a variety of sense codons can replace the naturally-occurring GCA alanine codon as the resume codon, both AAA and AAG lysine codons are non-functional resume codons. These results suggest that the main function of tmRNA in releasing stalled ribosomes is to supply a stop codon and so facilitate termination and subsequent ribosome recycling.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Michael O'Connor,