Article ID Journal Published Year Pages File Type
10767849 Biochemical and Biophysical Research Communications 2005 7 Pages PDF
Abstract
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-κB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1α, MIP-1β, and SDF-1α, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,