Article ID Journal Published Year Pages File Type
10768109 Biochemical and Biophysical Research Communications 2005 11 Pages PDF
Abstract
Cyclooxygenase (COX) catalyzes the first two steps in the conversion of arachidonic acid (AA) to prostaglandins (PGs). The reaction mechanism is well-defined and supported by extensive structural data. There are two isoforms of COX, which are nearly indistinguishable in structure and mechanism, however, COX-2 oxygenates neutral derivatives of AA that are poor substrates for COX-1. The best neutral substrate is 2-arachidonylglycerol, oxygenation of which produces an array of prostaglandin glyceryl esters (PG-Gs) that is nearly as diverse as the PGs. The mobilization of Ca2+ by subnanomolar concentrations of PGE2-G in RAW264.7 cells suggests the existence of a distinct receptor, and the formation of PG-Gs by zymosan-stimulated macrophages indicates that these species may be formed in vivo. These findings suggest that PG-Gs comprise a new class of lipid mediators, and that oxygenation of neutral derivatives of AA is a distinct function for the COX-2 isoform.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,