Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10768128 | Biochemical and Biophysical Research Communications | 2005 | 8 Pages |
Abstract
Oxidation of low density lipoprotein (LDL) is a critical step for atherogenesis, and the role of the 12/15-lipoxygenase (12/15-LOX) as well as LDL receptor-related protein (LRP) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like J774A.1 cells overexpressing 12/15-LOX was inhibited by an anti-LRP antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [3H]cholesteryl linoleate and [125I]apoB, association with the cells of [3H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [125I]apoB, indicating selective uptake of [3H]cholesteryl linoleate from LDL to these cells. An anti-LRP antibody inhibited the selective uptake of [3H]cholesteryl ester by 62% and 81% with the 12/15-LOX-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [3H]cholesteryl linoleate-labeled 12/15-LOX-expressing cells increased the release of [3H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [3H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-LRP antibody by 75%. These results strongly suggest that LRP contributes to the LDL oxidation by 12/15-LOX in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Yoshitaka Takahashi, Hong Zhu, Wanpeng Xu, Takashi Murakami, Tadao Iwasaki, Hiroaki Hattori, Tanihiro Yoshimoto,