Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10768829 | Biochemical and Biophysical Research Communications | 2005 | 10 Pages |
Abstract
The ends of eukaryotic chromosomes are protected by specialized structures termed telomeres that serve in part to prevent the chromosome end from activating a DNA damage response. However, this important function for telomeres in chromosome end protection can be lost as telomeres shorten with cell division in culture or in self-renewing tissues with advancing age. Impaired telomere function leads to induction of a DNA damage response and activation of the tumor suppressor protein p53. p53 serves a critical role in enforcing both senescence and apoptotic responses to dysfunctional telomeres. Loss of p53 creates a permissive environment in which critically short telomeres are inappropriately joined to generate chromosomal end-to-end fusions. These fused chromosomes result in cycles of chromosome fusion-bridge-breakage, which can fuel cancer initiation, especially in epithelial tissues, by facilitating changes in gene copy number.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Steven E. Artandi, Laura D. Attardi,