Article ID Journal Published Year Pages File Type
10769484 Biochemical and Biophysical Research Communications 2005 10 Pages PDF
Abstract
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, α-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of α-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by α-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that α-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of α-actinin and fascin. These findings highlight the cooperative activity of fascin and α-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,