Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10770343 | Biochemical and Biophysical Research Communications | 2005 | 7 Pages |
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21Cip1, which was abolished by pretreatment with actinomycin D. A p38 MAPK specific inhibitor, SB203580, blocked the increase of p21Cip1 mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21Cip1 mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21Cip1.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Minoru Iseki, Togo Ikuta, Tetsuya Kobayashi, Kaname Kawajiri,