Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10770516 | Biochemical and Biophysical Research Communications | 2005 | 9 Pages |
Abstract
Tumors frequently express urokinase (uPA) receptor (uPAR). To investigate whether uPAR can efficiently target cancerous cells using amphotropic retroviral vectors, we generated a retrovirus displaying the amino-terminal fragment (ATF) of uPA as an N-terminal extension of viral envelope protein. We also made use of a “two-step strategy” by inserting a uPA cleavage site between the ATF moiety and the envelope. We measured the ability of ATF-bearing chimeric envelopes to infect huPAR-overexpressing Madin-Darby canine kidney (MDCK) and control MDCK II cells. The ATF-viruses infected both MDCK cell lines with an equivalent efficiency, suggesting that the chimeric viruses were not sequestered by uPAR and infect cells preferentially via the Pit-2 receptor. The addition of a uPA cleavage site increased the infection level of huPAR-MDCK cells by 2-fold when uPA was present in the infection medium. Surprisingly, ATF-env viruses infected huPAR-MDCK cells 5.5-fold more efficiently in the presence of exogenous uPA. This stimulatory effect of uPA on infection of huPAR-MDCK cells by the ATF-env virus was completely abolished by methyl-β-cyclodextrin, suggesting that this effect involves the caveolar endocytosis pathway.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Antoine Boucquey, Frederik Vilhardt, Tatjana Mitrovic, Dominique Franco, Anne Weber, Philippe Horellou,