Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10770541 | Biochemical and Biophysical Research Communications | 2005 | 6 Pages |
Abstract
The 3C-like protease (3CLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays key roles in viral replication and is an attractive target for anti-SARS drug discovery. In this report, a fluorescence resonance energy transfer (FRET)-based method was developed to assess the proteolytic activity of SARS-CoV 3CLpro. Two internally quenched fluorogenic peptides, 1NC and 2NC, corresponding to the N-terminal and the C-terminal autocleavage sites of SARS-CoV 3CLpro, respectively, were used as substrates. SARS-CoV 3CLpro seemed to work more efficiently on 1NC than on 2NC in trans-cleavage assay. Mutational analysis demonstrated that the His41 residue, the N-terminal 7 amino acids, and the domain III of SARS-CoV 3CLpro were important for the enzymatic activity. Antibodies recognizing domain III could significantly inhibit the enzymatic activity of SARS-CoV 3CLpro. The effects of class-specific protease inhibitors on the trans-cleavage activity revealed that this enzyme worked more like a serine protease rather than the papain protease.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Wan-Fen Kuang, Lu-Ping Chow, Mei-Hua Wu, Lih-Hwa Hwang,