Article ID Journal Published Year Pages File Type
10770713 Biochemical and Biophysical Research Communications 2005 6 Pages PDF
Abstract
RNA interference (RNAi) is a powerful method for suppressing the expression of a gene of interest, and can be induced by 21-25 nucleotide small interfering RNA (siRNA) duplexes homologous to the silenced gene, which function as sequence-specific RNAi mediators in RNA-induced silencing complexes (RISCs). In the previous study, it was shown that fork-siRNA duplexes, whose sense-stranded siRNA elements carried a few nucleotide mismatches at the 3′-ends against the antisense-stranded siRNA elements, could enhance RNAi activity more than conventional siRNA duplexes in cultured mammalian cells. In this study, we further characterized fork-siRNA duplexes using reporter plasmids carrying target sequences complementary to the sense- or antisense-stranded siRNA elements in the untranslated region of Renilla luciferase. The data presented here suggest that nucleotide mismatches at either the 3′- or 5′-end of the sense-stranded siRNA elements in fork-siRNA duplexes could influence assembly of not only the antisense-stranded siRNA elements but also the sense-stranded elements into RISCs. In addition, we further suggest the possibility that there could be a positional effect of siRNA duplex on RNAi activity.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,