Article ID Journal Published Year Pages File Type
10770728 Biochemical and Biophysical Research Communications 2005 10 Pages PDF
Abstract
The intrinsic fluorescence of smooth muscle myosin signals conformational changes associated with different catalytic states of the ATPase cycle. To elucidate this relationship, we have examined the pre-steady-state kinetics of nucleotide binding, hydrolysis, and product release in motor domain-essential light chain mutants containing a single endogenous tryptophan, either residue 512 in the rigid relay loop or residue 29 adjacent to the SH3 domain. The intrinsic fluorescence of W512 is sensitive to both nucleotide binding and hydrolysis, and appears to report structural changes at the active site, presumably through a direct connection with switch II. The intrinsic fluorescence of W29 is sensitive to nucleotide binding but not hydrolysis, and does not appear to be tightly linked with structural changes occurring at the active site. We propose that the SH3 domain may be sensitive to conformational changes in the lever arm through contacts with the essential light chain.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,