Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10771570 | Biochemical and Biophysical Research Communications | 2005 | 6 Pages |
Abstract
The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6Â ÃÂ 10â8Â M). The receptor was not activated by a library of 35 other insect neuropeptides and monoamines, including neuropeptides that resembled myosuppressin in their C-terminal moiety, such as PDRNFLRFamide (Anopheles FMRFamide-3), other Anopheles FMRFamide peptides, or neuropeptide F-like peptides, showing that the receptor was quite selective for myosuppressin. These results also showed that the myosuppressin receptor needs a much larger portion than the C-terminal FLRFamide sequence for its activation. The insect myosuppressins are often grouped together with the insect FMRFamides under the name FaRPs (FMRFamide-related peptides). However, this is not justified anymore, because the insect myosuppressin receptor/ligand couple is both functionally and evolutionarily fully unrelated to the insect FMRFamide receptor/ligand couple. To our knowledge, this is the first report on the molecular identification of a mosquito neuropeptide receptor.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Susanne Schöller, Martin Belmont, Giuseppe Cazzamali, Frank Hauser, Michael Williamson, Cornelis J.P. Grimmelikhuijzen,