Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10798281 | Biochimica et Biophysica Acta (BBA) - Biomembranes | 2005 | 6 Pages |
Abstract
hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of l-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of l-Arg, the conductance of the transporter increased monoexponentially with the l-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 μS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]l-Arg, at symmetrically inside/outside l-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of l-Arg through hCAT-3 is symmetric, when the steady state of l-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including l-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Wolfgang Gilles, Sebastian D. Vulcu, Jana F. Liewald, Alice Habermeier, Nicole Vékony, Ellen I. Closs, Johanna Rupp, Hermann Nawrath,