Article ID Journal Published Year Pages File Type
10799193 Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2014 7 Pages PDF
Abstract
Chromatin signaling dynamics fundamentally regulate eukaryotic genomes. The reversible covalent post-translational modification (PTM) of histone proteins by chemical moieties such as phosphate, acetyl and methyl groups constitutes one of the primary chromatin signaling mechanisms. Modular protein domains present within chromatin-regulatory activities recognize or “read” specifically modified histone species and transduce these modified species into distinct downstream biological outcomes. Thus, understanding the molecular basis underlying PTM-mediated signaling at chromatin requires knowledge of both the modification and the partnering reader domains. Over the last ten years, a number of innovative approaches have been developed and employed to discover reader domain binding events with histones. Together, these studies have provided crucial insight into how chromatin pathways influence key cellular programs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,