Article ID Journal Published Year Pages File Type
10801075 Biochimica et Biophysica Acta (BBA) - General Subjects 2005 9 Pages PDF
Abstract
In this paper, we evaluated the grafting of G-protein-coupled receptors (GPCRs) onto functionalized surfaces, which is a primary requirement to elaborate receptor-based biosensors, or to develop novel GPCR assays. Bovine rhodopsin, a prototypical GPCR, was used in the form of receptor-enriched membrane fraction. Quantitative immobilization of the membrane-bound rhodopsin either non-specifically on a carboxylated dextran surface grafted with long alkyl groups, or specifically on a surface coated with anti-rhodopsin antibody was demonstrated by surface plasmon resonance. In addition, a new substrate based on mixed self-assembled multilayer that anchors specific anti-receptor antibodies was developed. Electrochemical impedance spectroscopy performed upon deposition of membrane-bound rhodopsin of increasing concentration exhibited a significant change, until a saturation level was reached, indicating optimum receptor immobilization on the substrate. The structures obtained with this new immobilization procedure of the rhodopsin in its native membrane environment are stable, with a controlled density of specific anchoring sites. Therefore, such receptor immobilization method is attractive for a range of applications, especially in the field of GPCR biosensors.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , , ,