Article ID Journal Published Year Pages File Type
10801634 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016 23 Pages PDF
Abstract
During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Nav1.5, have been described. Negative dominance is a classical genetic concept involving a “poison” mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K+ channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K+, Ca2 +, Cl− and Na+ channels, and in particular Brugada syndrome variants of Nav1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,