Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10801897 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2015 | 11 Pages |
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca2+ leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca2+ homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca2+ content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca2+ concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca2+ homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Guest Editors: Jacques Haiech, Claus Heizmann and Joachim Krebs.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Dmitrij A. Lisak, Teresa Schacht, Vitalij Enders, Jörn Habicht, Santeri Kiviluoto, Julia Schneider, Nadine Henke, Geert Bultynck, Axel Methner,