Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10802031 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2015 | 9 Pages |
Abstract
In eukaryotic protein synthesis the translation initiation factor 3 (eIF3) is a key player in the recruitment and assembly of the translation initiation machinery. Mammalian eIF3 consists of 13 subunits, including the loosely associated eIF3j subunit that plays a stabilizing role in the eIF3 complex formation and interaction with the 40S ribosomal subunit. By means of both co-immunoprecipitation and mass spectrometry analyses we demonstrate that the protein kinase CK2 interacts with and phosphorylates eIF3j at Ser127. Inhibition of CK2 activity by CX-4945 or down-regulation of the expression of CK2 catalytic subunit by siRNA cause the dissociation of j-subunit from the eIF3 complex as judged from glycerol gradient sedimentation. This finding proves that CK2-phosphorylation of eIF3j is a prerequisite for its association with the eIF3 complex. Expression of Ser127Ala-eIF3j mutant impairs both the interaction of mutated j-subunit with the other eIF3 subunits and the overall protein synthesis. Taken together our data demonstrate that CK2-phosphorylation of eIF3j at Ser127 promotes the assembly of the eIF3 complex, a crucial step in the activation of the translation initiation machinery.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Christian Borgo, Cinzia Franchin, Valentina Salizzato, Luca Cesaro, Giorgio Arrigoni, Laura Matricardi, Lorenzo A. Pinna, Arianna Donella-Deana,