Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10802116 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2014 | 10 Pages |
Abstract
Calcific aortic valve disease (CAVD) is a chronic inflammatory condition and affects a large number of elderly people. Aortic valve interstitial cells (AVICs) occupy an important role in valvular calcification and CAVD progression. While pro-inflammatory mechanisms are capable of inducing the osteogenic responses in AVICs, the molecular interaction between pro-inflammatory and pro-osteogenic mechanisms remains poorly understood. This study tested the hypothesis that intercellular adhesion molecule-1 (ICAM-1) plays a role in mediating pro-osteogenic factor expression in human AVICs. AVICs were isolated from normal human aortic valves and cultured in M199 medium. Treatment with leukocyte function-associated factor-1 (LFA-1, an ICAM-1 ligand) up-regulated the expression of bone morphogenetic protein-2 (BMP-2) and resulted in increased alkaline phosphatase activity and formation of calcification nodules. Pre-treatment with lipopolysaccharide (LPS, 0.05 μg/ml) increased ICAM-1 levels on cell surfaces and exaggerated the pro-osteogenic response to LFA-1, and neutralization of ICAM-1 suppressed this response. Further, ligation of ICAM-1 by antibody cross-linking also up-regulated BMP-2 expression. Interestingly, LFA-1 elicited Notch1 cleavage and NF-κB activation. Inhibition of NF-κB markedly reduced LFA-1-induced BMP-2 expression, and inhibition of Notch1 cleavage with a γ-secretase inhibitor suppressed LFA-1-induced NF-κB activation and BMP-2 expression. Ligation of ICAM-1 on human AVICs activates the Notch1 pathway. Notch1 up-regulates BMP-2 expression in human AVICs through activation of NF-κB. The results demonstrate a novel role of ICAM-1 in translating a pro-inflammatory signal into a pro-osteogenic response in human AVICs and suggest that ICAM-1 on the surfaces of AVICs contributes to the mechanism of aortic valve calcification.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Dong Wang, Qingchun Zeng, Rui Song, Lihua Ao, David A. Fullerton, Xianzhong Meng,