Article ID Journal Published Year Pages File Type
10802245 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2012 15 Pages PDF
Abstract
We have revisited the role of PINK1 and Parkin in mitochondrial dynamics, and explored its relation to the mitochondrial clearance program controlled by these proteins. We show that PINK1 and Parkin promote Drp1-dependent mitochondrial fission by mechanisms that are at least in part independent. Parkin-mediated mitochondrial fragmentation was abolished by treatments interfering with the calcium/calmodulin/calcineurin signaling pathway, suggesting that it requires dephosphorylation of serine 637 of Drp1. Parkinson's disease-causing mutations with differential impact on mitochondrial morphology and organelle degradation demonstrated that the pro-fission effect of Parkin is not required for efficient mitochondrial clearance. In contrast, the use of Förster energy transfer imaging microscopy revealed that Drp1 and Parkin are co-recruited to mitochondria in proximity of PINK1 following mitochondrial depolarization, indicating spatial coordination between these events in mitochondrial degradation. Our results also hint at a major role of the outer mitochondrial adaptor MiD51 in Drp1 recruitment and Parkin-dependent mitophagy. Altogether, our observations provide new insight into the mechanisms underlying the regulation of mitochondrial dynamics by Parkin and its relation to the mitochondrial clearance program mediated by the PINK1/Parkin pathway.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,