Article ID Journal Published Year Pages File Type
10802294 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013 39 Pages PDF
Abstract
p27 is a cyclin-dependent kinase (CDK) inhibitor that suppresses a cell's transition from G0 to S phase, therefore acting as a tumor suppressor. Our most recent studies demonstrate that upon arsenite exposure, p27 suppresses Hsp27 and Hsp70 expressions through the JNK2/c-Jun- and HSF-1-dependent pathways, suggesting a novel molecular mechanism underlying the tumor suppressive function of p27 in a CDK-independent manner. We found that p27-deficiency (p27 −/−) resulted in the elevation of cyclooxygenase-2 (COX-2) expression at transcriptional level, whereas the introduction of p27 brought back COX-2 expression to a level similar to that of p27 +/+ cells, suggesting that p27 exhibits an inhibitory effect on COX-2 expression. Further studies identified that p27 inhibition of COX-2 expression was specifically due to phosphorylation of transcription factor cAMP response element binding (CREB) phosphorylation mediated by p38β and p38δ. These results demonstrate a novel mechanism underlying tumor suppression effect of p27 and will contribute to the understanding of the overall mechanism of p27 tumor suppression in a CDK-independent manner.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , ,