Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10802980 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2008 | 10 Pages |
Abstract
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a β3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the α subunit partner of β3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that αv forms an αvβ3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-αv or anti-β3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with αvβ3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the αvβ3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Tamara Hermosilla, Daniel Muñoz, Rodrigo Herrera-Molina, Alejandra Valdivia, Nicolás Muñoz, Sang-Uk Nham, Pascal Schneider, Keith Burridge, Andrew F.G. Quest, Lisette Leyton,