Article ID Journal Published Year Pages File Type
10803121 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2005 10 Pages PDF
Abstract
A pulse of short peptides, RGDS and DGEA in the millimolar range, immediately elicits in normal human fibroblasts a transient increase of intracellular Ca2+ ([Ca2+]i). In the present study, we show that this [Ca2+]i occurs in an increasing number of cells as a function of peptides concentration. It is specific of each peptide and inhibited at saturating concentration of the peptide in the culture medium. The [Ca2+]i transient depends on signalling pathways slightly different for DGEA and RGDS involving tyrosine kinase(s) and phosphatase(s), phospholipase C, production of inositol-trisphosphate and release of Ca2+ from the cellular stores. GFOGER, the classical collagen binding peptide of α1- α2- and α11-β1 integrins, in triple helical or denatured form, does not produce any Ca2+ signal. The [Ca2+]i signalling induced by RGDS and DGEA is inhibited by antibodies against β1 integrin subunit while that mediated by RGDS is also inhibited by antibodies against the α3 integrin. Delay in the acquisition of responsiveness is observed during cell adhesion and spreading on a coat of fibronectin for RGDS or collagen for DGEA or on a coat of the specific integrin-inhibiting antibodies but not by seeding cells on GFOGER or laminin-5. This delay is suppressed specifically by collagenase acting on the collagen coat or trypsin on the fibronectin coat. Our results suggest that free integrins and associated focal complexes generate a Ca2+ signal upon recognition of DGEA and RGDS by different cellular pathways.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,