Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10803205 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2005 | 10 Pages |
Abstract
To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.
Keywords
EPMAIP3FCCPJC-1caged Ca2+carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodideinositol 1,4,5-trisphosphateParkinson's diseaseFluorescent imagingPhotolysisMagnesiumMitochondriaelectron probe microanalysisMitochondrial membrane potential
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Takeshi Kubota, Yutaka Shindo, Kentaro Tokuno, Hirokazu Komatsu, Hiroto Ogawa, Susumu Kudo, Yoshiichiro Kitamura, Koji Suzuki, Kotaro Oka,