Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10803632 | Biochimie | 2013 | 8 Pages |
Abstract
Staphylococcus aureus causes many serious visceral, skin, and respiratory diseases. About 90% of its clinical strains are multi-drug resistant, but the use of bacteriophage lytic enzymes offers a viable alternative to antibiotic therapy. LysK, the phage K endolysin, can lyse S. aureus when purified and exposed externally. It has been investigated in its complexes with polycationic polymers (poly-l-lysines (PLLs) of molecular weights 2.5, 9.6, and 55.2 kDa and their block copolymers with polyethylene glycol PLL10-PEG114, PLL30-PEG114, and PLL30-PEG23) as a basis for creating active and stable antimicrobial. Complexing with polycationic PLLs produces a stabilizing effect on LysK due to structure ordering in its molecules and break-down of aggregates as a result of electrostatic interaction. The stability of LysK in the presence of PLL-PEG block copolymers improves by both electrostatic and hydrophobic mechanisms. Complexes of LysK with 2.5, 9.6, 55.2 kDa poly-l-lysines and PLL30-PEG114 have demonstrated sufficient stability at the temperatures of physiological activity (37 °C) and storage (4 °C and 22 °C).
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Lyubov Y. Filatova, David M. Donovan, Stephen C. Becker, Dmitry N. Lebedev, Anastasia D. Priyma, Helena V. Koudriachova, Alexander V. Kabanov, Natalia L. Klyachko,