Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10814829 | Cellular Signalling | 2015 | 10 Pages |
Abstract
Mitogen-activated protein kinases (MAPK) can be activated by a number of biochemical pathways through distinct signaling molecules. We have recently revealed a novel function for the Ras-like small GTPase ADP-ribosylation factor 1 (ARF1) in mediating the activation of Raf1-MEK-ERK1/2 pathway by G protein-coupled receptors [Dong C, Li C and Wu G (2011) J Biol Chem 286, 43,361-43,369]. Here, we have further defined the underlying mechanism and the possible function of ARF1-mediated MAPK pathway. We demonstrated that the blockage of ARF1 activation and the disruption of ARF1 localization to the Golgi by mutating Thr48, a highly conserved residue involved in the exchange of GDP for GTP, and the myristoylation site Gly2 abolished ARF1's ability to activate ERK1/2. In addition, treatment with Golgi structure disrupting agents markedly attenuated ARF1-mediated ERK1/2 activation. Furthermore, ARF1 significantly promoted cell proliferation. More interestingly, ARF1 activated 90Â kDa ribosomal S6 kinase 1 (RSK1) without influencing Elk-1 activation and ERK2 translocation to the nuclei. These data demonstrate that, once activated, ARF1 activates the MAPK pathway likely using the Golgi as a main platform, which in turn activates the cytoplasmic RSK1, leading to cell proliferation.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Fuguo Zhou, Chunmin Dong, Jason E. Davis, William H. Wu, Kristen Surrao, Guangyu Wu,