Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10815023 | Cellular Signalling | 2016 | 9 Pages |
Abstract
Although increasing evidence demonstrated that deregulation of mircoRNA-503 (miRNA-503) contributes to tumorigenesis, little is known about the biological role and intrinsic regulatory mechanisms of miR-503 in prostate cancer (PCa). In present study, we found that miR-503 was significantly downregulated in advanced PCa tissues and cell lines. Downregulation of miR-503 was strongly associated with aggressive clinical-pathological features and poor prognosis in PCa patients. Ectopic expression of miR-503 significantly inhibited tumor cells growth, cell migration and invasion in vitro and in vivo. Mechanistic studies revealed that ZNF217 was a direct target downstream target of miR-503. Knockdown of ZNF217 mimicked the tumor-suppressive effects of miR-503 overexpression on PCa invasion, whereas ZNF217 overexpression attenuated the tumor-suppressive function of miR-503. Subsequently, miR-503 further modulated the activation of ZNF217-downstream epithelial-mesenchymal transition (EMT) genes. Besides, we also found that GATA3 directly increased miR-503 expression and thus decreased ZNF217 expression, indicating the involvement of GATA3/miR-503/ZNF217 signaling in EMT process. Collectively, our results demonstrated that GATA3-driven expression of miR-503 inhibits PCa progression by repressing ZNF217 expression, and also implicated the potential application of miR-503 in PCa therapy.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Xingkang Jiang, Yue Chen, E. Du, Kuo Yang, Zhihong Zhang, Shiyong Qi, Yong Xu,