| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10815436 | Cellular Signalling | 2013 | 7 Pages | 
Abstract
												This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.
											Related Topics
												
													Life Sciences
													Biochemistry, Genetics and Molecular Biology
													Biochemistry
												
											Authors
												Wen-Hsin Liu, Ying-Jung Chen, Tian-Lu Cheng, Shinne-Ren Lin, Long-Sen Chang, 
											