Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10815604 | Cellular Signalling | 2011 | 7 Pages |
Abstract
Purified PDE5 preparations exhibited variable proportions of two mobility forms (Bands 2 and 3) by native PAGE. Treatment of recombinant or native PDE5 with either cGMP or a substrate analog such as sildenafil, each of which is known to produce stimulatory effects on enzyme functions, caused a similar native PAGE band-shift to the lower mobility form (shift of Band 2 to Band 3). Incubation of PDE5 with Mg++ or Mn++, which is known to stimulate activity, caused a similar shift of the enzyme from Band 2 to Band 3 as did cGMP or sildenafil, but incubation with EDTA caused a time- and concentration-dependent shift to higher mobility (shift of Bands 2 and 3 to Band 1). A slow time course of the EDTA-induced band-shift suggested removal of a pre-bound metal ion (Me++) with affinity of ~Â 0.1Â nM, which was similar to the previously determined affinity of PDE5 for Zn++. The EDTA-treated enzyme (Band 1) could be shifted to Bands 2 and 3 by addition of cGMP, sildenafil, or Me++; however, the cGMP- or sildenafil-induced shift was inhibited and the Me++-induced shift was facilitated by treatment with EDTA. Results suggested that Me++ removal from PDE5 produces a unique apoenzyme form (Band 1, more globular, negatively charged, or both) of PDE5 that can be partially converted to forms (Band 2, less globular or negatively charged, or both; and Band 3, more elongated/positively charged, or both) by addition of Me++, substrate, or substrate analog. It is concluded that Me++ causes conversion of PDE5 to similar conformational forms as caused by substrate or inhibitor binding to the catalytic site.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Jackie D. Corbin, Teri-Lee Foster, Emmanuel Bessay, Jennifer Busch, Mitsi Blount, Sharron H. Francis,