Article ID Journal Published Year Pages File Type
10815838 Cellular Signalling 2010 13 Pages PDF
Abstract
Prenylation of G protein gamma (γ) subunits is necessary for the membrane localization of heterotrimeric G proteins and for functional heterotrimeric G protein coupled receptor (GPCR) signaling. To evaluate GPCR signaling pathways during development, we injected zebrafish embryos with mRNAs encoding Gγ subunits mutated so that they can no longer be prenylated. Low-level expression of these prenylation-deficient Gγ subunits driven either ubiquitously or specifically in the primordial germ cells (PGCs) disrupts GPCR signaling and manifests as a PGC migration defect. This disruption results in a reduction of calcium accumulation in the protrusions of migrating PGCs and a failure of PGCs to directionally migrate. When co-expressed with a prenylation-deficient Gγ, 8 of the 17 wildtype Gγ isoforms individually confer the ability to restore calcium accumulation and directional migration. These results suggest that while the Gγ subunits possess the ability to interact with G Beta (β) proteins, only a subset of wildtype Gγ proteins are stable within PGCs and can interact with key signaling components necessary for PGC migration. This in vivo study highlights the functional redundancy of these signaling components and demonstrates that prenylation-deficient Gγ subunits are an effective tool to investigate the roles of GPCR signaling events during vertebrate development.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,