Article ID Journal Published Year Pages File Type
10816012 Cellular Signalling 2014 13 Pages PDF
Abstract
Insulin and muscle contraction each stimulate translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle, an important process regulating whole-body glucose homeostasis. RalA mediates insulin-stimulated GLUT4 translocation; however, it is unclear how this small GTPase is regulated in skeletal muscle in response to insulin. Here, we identified GARNL1/RalGAPα1, a major α subunit of the Ral-GTPase activating protein in skeletal muscle, as a protein whose phosphorylation and binding to the regulatory 14-3-3 proteins is stimulated by insulin and also by muscle contraction. The insulin-stimulated interaction with 14-3-3 involved PKB/Akt-mediated phosphorylation of Thr735 on GARNL1/RalGAPα1. Knockdown of GARNL1/RalGAPα1 increased, while overexpression of GARNL1/RalGAPα1Thr735Ala mutant protein decreased, the RalA activation and the RalA-dependent GLUT4 translocation in response to insulin in muscle cells. These findings show that GARNL1/RalGAPα1 is the missing link that connects the insulin-PKB/Akt signaling pathway with the activation of the RalA small GTPase in muscle cells. GARNL1/RalGAPα1 and its phosphorylation and/or binding to 14-3-3s are critical for GLUT4 trafficking through RalA in muscle cells.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , , , ,