Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10820523 | Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology | 2005 | 5 Pages |
Abstract
In pigs, humans, chimpanzees and probably other great apes, a cysteine at residue 6 enables apolipoprotein A-II to form a homodimer. However, the apoA-IIs of other primates, lacking a cysteine residue, are monomeric. We have already reported that horse apoA-IIs form homodimers due also to a cysteine at residue 6. In this study, we wanted to determine whether other equine apoA-IIs might be monomeric. The high density lipoproteins were ultracentrifugally isolated from the plasmas of a horse (Equus caballus), a donkey (Equus asinus) and five wild equines: two types of zebras (Equus zebra hartmannae and Equus zebra quagga boehmi), a Przewalski's horse (Equus przewalskii), a Somali ass (Equus africanus somalicus) and a kiang (Equus kiang holdereri). Using liquid chromatography with electrospray-ionization mass spectrometry, we were able to obtain accurate values for the molecular masses of apoA-I and apoA-II. Homodimeric apoA-IIs were observed in each of the animals studied. The donkey had unique dimers, consisting of the proapolipoprotein A-II linked by a disulfide bond either to a mature apoA-II monomer or another proapoA-II. In addition, our data indicate that small amounts of apoA-I and apoA-II apparently are acylated.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Donald L. Puppione, Julian P. Whitelegge, Lang M. Yam, Sara Bassilian, Verne N. Schumaker, Melinda H. MacDonald,