Article ID Journal Published Year Pages File Type
10822659 Current Opinion in Structural Biology 2008 7 Pages PDF
Abstract
Protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAc) is a reversible post-translational modification of serines/threonines on metazoan proteins and occurring with similar time scales, dynamics and stoichiometry as protein phosphorylation. Levels of this modification are regulated by two enzymes-O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Although the biochemistry of these enzymes and functional implications of O-GlcNAc have been studied extensively, until recently the structures and molecular mechanisms of OGT/OGA were not understood. This review covers a body of recent work that has led to an understanding of the structure of OGA, its catalytic mechanism and the development of a plethora of different inhibitors that are finding their use in cell biological studies towards the functional implications of O-GlcNAc. Furthermore, the very recent structure determination of a bacterial OGT orthologue has given the first insights into the contribution of the tetratricopeptide repeats (TPRs) to the active site and the role of some residues in catalysis and substrate binding.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,