Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10825352 | Journal of Chemical Neuroanatomy | 2005 | 8 Pages |
Abstract
This study aimed to test the hypothesis that mild hypoxic preconditioning (MHPC)-induced NOS expression would attenuate the neuropathological changes in the nodose ganglion (NG) of severe hypoxic exposure (SHE) rats. Thus, the young adult rats were caged in the altitude chamber for 4 weeks prior to SHE for 4Â h to gain hypoxic preconditioning. The altitude chamber was used to set the height at the level from 5500Â m (0.50Â atm; pO2Â =Â 79Â Torr) to 10,000Â m (0.27Â atm; pO2Â =Â 43Â Torr) for MHPC and SHE, respectively. The experimental animals were allowed to survive for 0, 7, 14, 30 and 60 successive days, respectively. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to detect NADPH-d/nNOS reactivity in the NG at various time points following hypoxic exposure. The present results showed that about 38% of the neurons in the NG displayed NADPH-d/nNOS positive [NADPH-d/nNOS(+)] in normoxic rats. In SHE rats, a peak in the percentage (71%) and staining intensity (230%) of NADPH-d/nNOS(+) nodose neurons at 0 day, which then gradually decreased at 7-60 days. About 25% of the nodose neurons died 60 days after SHE. However, in MHPC rats subjected to SHE, NADPH-d/nNOS(+) neurons peaked in the percentage (51%) and staining intensity (171%) at 0 day, which then decreased at 7-60 days. In addition, neuronal survival was markedly increased by MHPC. These results suggested that MHPC might have a neuroprotective effect that reduces the susceptibility of the nodose neurons to NOS mediated neuropathy subsequent to SHE.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
I-Hua Wei, Chih-Chia Huang, Hung-Ming Chang, Chi-Yu Tseng, Hui-Chin Tu, Chen-Yuan Wen, Jeng-Yung Shieh,