Article ID Journal Published Year Pages File Type
10825900 Methods 2013 6 Pages PDF
Abstract
mRNA forms various secondary and tertiary structures that affect gene expression. Although structures formed in the untranslated regions (UTRs) of mRNAs that inhibit translation have been characterized, stable mRNA structures in open reading frames (ORFs) may also cause translational halt or slow translation elongation. We previously established a method, termed a synchronized translation assay, that enables time course analysis of single turnover translation elongation. In this method, translation initiation, which is a rate determining step of the translation procedure, can be ignored because all ribosomes are synchronized on a specific position of mRNA before translation elongation is restarted from this position. In this paper, we used the synchronized translation assay to evaluate the effects of a G-quadruplex structure located at various positions within the mRNA ORF on translational halt.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,