Article ID Journal Published Year Pages File Type
10826195 Methods 2012 7 Pages PDF
Abstract
This review article introduces the nanopore single-molecule method for the study of G-quadruplex nucleic acid structures. Single G-quadruplexes can be trapped into a 2 nm protein pore embedded in the lipid bilayer membrane. The trapped G-quadruplex specifically blocks the current through the nanopore, creating a signature event for quantitative analysis of G-quadruplex properties, from cation-determined folding and unfolding kinetics to the interactions with the protein ligand. The nanopore single-molecule method is simple, accurate, and requires no labels. It can be used to evaluate G-quadruplex mechanisms and it may have applications in G-quadruplex-based biosensors, nanomachines, and nanostructure assembly.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,