Article ID Journal Published Year Pages File Type
10836178 Peptides 2005 8 Pages PDF
Abstract
Nociceptin is an endogenous anti-opiate heptadecapeptide primarily interacting with the nociceptin (NOP) receptor. This neuropeptide-receptor system is involved in pain regulation, tolerance to and dependence on opiates as well as many other physiological and pathophysiological events. The role and mechanisms of nociceptin in pathological conditions is not clearly known yet. In an attempt to have a radiopharmaceutical labeled either with 99mTc or 111In, we incorporated diethylenetriaminepentaacetic acid (DTPA) as chelator into the structure of [Arg14,Lys15]nociceptin(1-17)-NH2 at the ɛ-amino group of Lys15. Such a radiopeptide may be useful in imaging for diagnostical purposes. Preparation of the peptide ligands was carried out by solid phase synthesis. Two peptides containing DTPA were obtained and purified. The products were [Arg14,Lys(DTPA)15]nociceptin(1-17)-NH2 and its cross-linked dimer on the basis of mass spectrometric analysis. In 115In3+ binding experiments the conjugates exhibited preserved indium ion chelating properties, indicating the potential use of radiolabeled DTPA-nociceptin derivatives as radiopharmaceutical. Biological properties of these compounds were studied in rat brain membrane preparations by radioligand binding, functional biochemical [35S]GTPγS binding assays and mouse vas deferens (MVD) bioassay. Besides the similar in vitro binding characteristics to nociceptin receptor, both of the DTPA-chelated compounds were more potent and efficient than nociceptin in functional biochemical and mouse vas deferens bioassays. Our further aim is to radiolabel these compounds in order to get a radiopharmaceutical which can be used diagnostically.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , ,