Article ID Journal Published Year Pages File Type
1083655 Journal of Clinical Epidemiology 2009 8 Pages PDF
Abstract

ObjectiveDifferential item functioning (DIF) analyses are increasingly used to evaluate health-related quality of life (HRQoL) instruments, which often include relatively short subscales. Computer simulations were used to explore how various factors including scale length affect analysis of DIF by ordinal logistic regression.Study Design and settingSimulated data, representative of HRQoL scales with four-category items, were generated. The power and type I error rates of the DIF method were then investigated when, respectively, DIF was deliberately introduced and when no DIF was added. The sample size, scale length, floor effects (FEs) and significance level were varied.ResultsWhen there was no DIF, type I error rates were close to 5%. Detecting moderate uniform DIF in a two-item scale required a sample size of 300 per group for adequate (>80%) power. For longer scales, a sample size of 200 was adequate. Considerably larger sample sizes were required to detect nonuniform DIF, when there were extreme FEs or when a reduced type I error rate was required.ConclusionThe impact of the number of items in the scale was relatively small. Ordinal logistic regression successfully detects DIF for HRQoL instruments with short scales. Sample size guidelines are provided.

Related Topics
Health Sciences Medicine and Dentistry Public Health and Health Policy
Authors
, , , , , , , , , ,